3.63 \(\int \frac {1}{(a+b \sin (c+d x))^{4/3}} \, dx\)

Optimal. Leaf size=111 \[ -\frac {\sqrt {2} \cos (c+d x) \sqrt [3]{\frac {a+b \sin (c+d x)}{a+b}} F_1\left (\frac {1}{2};\frac {1}{2},\frac {4}{3};\frac {3}{2};\frac {1}{2} (1-\sin (c+d x)),\frac {b (1-\sin (c+d x))}{a+b}\right )}{d (a+b) \sqrt {\sin (c+d x)+1} \sqrt [3]{a+b \sin (c+d x)}} \]

[Out]

-AppellF1(1/2,4/3,1/2,3/2,b*(1-sin(d*x+c))/(a+b),1/2-1/2*sin(d*x+c))*cos(d*x+c)*((a+b*sin(d*x+c))/(a+b))^(1/3)
*2^(1/2)/(a+b)/d/(a+b*sin(d*x+c))^(1/3)/(1+sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 111, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2665, 139, 138} \[ -\frac {\sqrt {2} \cos (c+d x) \sqrt [3]{\frac {a+b \sin (c+d x)}{a+b}} F_1\left (\frac {1}{2};\frac {1}{2},\frac {4}{3};\frac {3}{2};\frac {1}{2} (1-\sin (c+d x)),\frac {b (1-\sin (c+d x))}{a+b}\right )}{d (a+b) \sqrt {\sin (c+d x)+1} \sqrt [3]{a+b \sin (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sin[c + d*x])^(-4/3),x]

[Out]

-((Sqrt[2]*AppellF1[1/2, 1/2, 4/3, 3/2, (1 - Sin[c + d*x])/2, (b*(1 - Sin[c + d*x]))/(a + b)]*Cos[c + d*x]*((a
 + b*Sin[c + d*x])/(a + b))^(1/3))/((a + b)*d*Sqrt[1 + Sin[c + d*x]]*(a + b*Sin[c + d*x])^(1/3)))

Rule 138

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Simp[((a + b*x)
^(m + 1)*AppellF1[m + 1, -n, -p, m + 2, -((d*(a + b*x))/(b*c - a*d)), -((f*(a + b*x))/(b*e - a*f))])/(b*(m + 1
)*(b/(b*c - a*d))^n*(b/(b*e - a*f))^p), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m] &&  !Inte
gerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !(GtQ[d/(d*a - c*b), 0] && GtQ[
d/(d*e - c*f), 0] && SimplerQ[c + d*x, a + b*x]) &&  !(GtQ[f/(f*a - e*b), 0] && GtQ[f/(f*c - e*d), 0] && Simpl
erQ[e + f*x, a + b*x])

Rule 139

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_Symbol] :> Dist[(e + f*x)^
FracPart[p]/((b/(b*e - a*f))^IntPart[p]*((b*(e + f*x))/(b*e - a*f))^FracPart[p]), Int[(a + b*x)^m*(c + d*x)^n*
((b*e)/(b*e - a*f) + (b*f*x)/(b*e - a*f))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&  !IntegerQ[m]
&&  !IntegerQ[n] &&  !IntegerQ[p] && GtQ[b/(b*c - a*d), 0] &&  !GtQ[b/(b*e - a*f), 0]

Rule 2665

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[Cos[c + d*x]/(d*Sqrt[1 + Sin[c + d*x]]*Sqrt
[1 - Sin[c + d*x]]), Subst[Int[(a + b*x)^n/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Sin[c + d*x]], x] /; FreeQ[{a, b,
 c, d, n}, x] && NeQ[a^2 - b^2, 0] &&  !IntegerQ[2*n]

Rubi steps

\begin {align*} \int \frac {1}{(a+b \sin (c+d x))^{4/3}} \, dx &=\frac {\cos (c+d x) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {1+x} (a+b x)^{4/3}} \, dx,x,\sin (c+d x)\right )}{d \sqrt {1-\sin (c+d x)} \sqrt {1+\sin (c+d x)}}\\ &=\frac {\left (\cos (c+d x) \sqrt [3]{-\frac {a+b \sin (c+d x)}{-a-b}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x} \sqrt {1+x} \left (-\frac {a}{-a-b}-\frac {b x}{-a-b}\right )^{4/3}} \, dx,x,\sin (c+d x)\right )}{(a+b) d \sqrt {1-\sin (c+d x)} \sqrt {1+\sin (c+d x)} \sqrt [3]{a+b \sin (c+d x)}}\\ &=-\frac {\sqrt {2} F_1\left (\frac {1}{2};\frac {1}{2},\frac {4}{3};\frac {3}{2};\frac {1}{2} (1-\sin (c+d x)),\frac {b (1-\sin (c+d x))}{a+b}\right ) \cos (c+d x) \sqrt [3]{\frac {a+b \sin (c+d x)}{a+b}}}{(a+b) d \sqrt {1+\sin (c+d x)} \sqrt [3]{a+b \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 1.93, size = 262, normalized size = 2.36 \[ -\frac {3 \sec (c+d x) \left (5 a \sqrt {-\frac {b (\sin (c+d x)-1)}{a+b}} \sqrt {-\frac {b (\sin (c+d x)+1)}{a-b}} (a+b \sin (c+d x)) F_1\left (\frac {2}{3};\frac {1}{2},\frac {1}{2};\frac {5}{3};\frac {a+b \sin (c+d x)}{a-b},\frac {a+b \sin (c+d x)}{a+b}\right )-2 \left (2 \sqrt {-\frac {b (\sin (c+d x)-1)}{a+b}} \sqrt {\frac {b (\sin (c+d x)+1)}{b-a}} (a+b \sin (c+d x))^2 F_1\left (\frac {5}{3};\frac {1}{2},\frac {1}{2};\frac {8}{3};\frac {a+b \sin (c+d x)}{a-b},\frac {a+b \sin (c+d x)}{a+b}\right )+5 b^2 \cos ^2(c+d x)\right )\right )}{10 b d \left (a^2-b^2\right ) \sqrt [3]{a+b \sin (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*Sin[c + d*x])^(-4/3),x]

[Out]

(-3*Sec[c + d*x]*(5*a*AppellF1[2/3, 1/2, 1/2, 5/3, (a + b*Sin[c + d*x])/(a - b), (a + b*Sin[c + d*x])/(a + b)]
*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[-((b*(1 + Sin[c + d*x]))/(a - b))]*(a + b*Sin[c + d*x]) - 2*(5*
b^2*Cos[c + d*x]^2 + 2*AppellF1[5/3, 1/2, 1/2, 8/3, (a + b*Sin[c + d*x])/(a - b), (a + b*Sin[c + d*x])/(a + b)
]*Sqrt[-((b*(-1 + Sin[c + d*x]))/(a + b))]*Sqrt[(b*(1 + Sin[c + d*x]))/(-a + b)]*(a + b*Sin[c + d*x])^2)))/(10
*b*(a^2 - b^2)*d*(a + b*Sin[c + d*x])^(1/3))

________________________________________________________________________________________

fricas [F]  time = 0.70, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {2}{3}}}{b^{2} \cos \left (d x + c\right )^{2} - 2 \, a b \sin \left (d x + c\right ) - a^{2} - b^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))^(4/3),x, algorithm="fricas")

[Out]

integral(-(b*sin(d*x + c) + a)^(2/3)/(b^2*cos(d*x + c)^2 - 2*a*b*sin(d*x + c) - a^2 - b^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))^(4/3),x, algorithm="giac")

[Out]

integrate((b*sin(d*x + c) + a)^(-4/3), x)

________________________________________________________________________________________

maple [F]  time = 0.12, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a +b \sin \left (d x +c \right )\right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+b*sin(d*x+c))^(4/3),x)

[Out]

int(1/(a+b*sin(d*x+c))^(4/3),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{{\left (b \sin \left (d x + c\right ) + a\right )}^{\frac {4}{3}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))^(4/3),x, algorithm="maxima")

[Out]

integrate((b*sin(d*x + c) + a)^(-4/3), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (a+b\,\sin \left (c+d\,x\right )\right )}^{4/3}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a + b*sin(c + d*x))^(4/3),x)

[Out]

int(1/(a + b*sin(c + d*x))^(4/3), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (a + b \sin {\left (c + d x \right )}\right )^{\frac {4}{3}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*sin(d*x+c))**(4/3),x)

[Out]

Integral((a + b*sin(c + d*x))**(-4/3), x)

________________________________________________________________________________________